skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pomatto, Michelle E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. C–H functionalization of commodity polyolefins affords functional materials derived from a high‐volume, low‐cost resource. However, current postpolymerization modification strategies result in randomly distributed functionalization along the length of the polymer backbone, which has a negative impact on the crystallinity of the resultant polymers, and thus the thermomechanical properties. Here, we demonstrate an amidyl radical mediated C–H functionalization of polyolefins to access blocky microstructures, which exhibit a higher crystalline fraction, larger crystallite size, and improved mechanical properties compared to their randomly functionalized analogues. Taking inspiration from the site‐selective C–H functionalization of small molecules, we leverage the steric protection provided by crystallites and target polymer functionalization to amorphous domains in a semicrystalline polyolefin gel. The beneficial outcomes of blocky functionalization are independent of the identity of the pendant functional group that is installed through functionalization. The decoupling of functional group incorporation and crystallinity highlights the promise in accessing nonrandom microstructures through selective functionalization to circumvent traditional tradeoffs in postpolymerization modification, with potential impact in advanced materials and upcycling plastic waste. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Blocky bromination of PEKK yields superior crystallizability, high %Xc,Tg,Tm,Tc, and faster crystallization kinetics compared to random analogs. 
    more » « less